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Symbolic methods for the analysis of cryptographic protocols have been increasing in pop-
ularity, and they have proven to be useful for addressing a number of different cryptographic
problems. Such symbolic methods often rely on unification, in particular unification modulo
equational theories that arise from equational properties of the cryptographic algorithms in-
volved. This has led to a synergistic interaction between cryptographic protocol analysis and
equational unification, resulting in new unification techniques such as variant unification, new
problem areas such as asymmetric unification, and a new focus on equational theories that
describe the operations of cryptographic algorithms.

Security researchers have lately begun exploring the application of symbolic techniques at a
lower level of abstraction: to the verification of cryptosytems themselves. One particular area
of interest is the automatic generation of cryptographic algorithms, in which cryptosystems are
generated using a fixed set of operations that can be combined in multiple ways. Symbolic
methods can then be used to evaluate the automatically generated cryptosystems. In many
cases, the symbolic criteria are shown to guarantee cryptographic security, as in [5, 3, 2].
However, we note that, the more complex the equational theory, and the more powerful the
adversary, the harder it becomes to guarantee cryptographic soundness and completeness of
symbolic security properties. Our own work has concentrated on theories that, while relatively
simple, are widely used in cryptography, and on proving security against a powerful adversary
capable of adaptive chosen plaintext attacks, in which an adversary can use information from
previous interactions with the cryptosystem to provide new input to it.

One simple theory that is applicable to a wide class of algorithms is the combination of
an Abelian group theory (of which the exclusive-or theory is a special case), and a free unary
operator f , along with a finite set of free constants. The operator f stands for a keyed function
where the key is not known by the adversary, e.g. a keyed hash function or a block cipher.

A block cipher is a cipher that, given a plaintext block of a fixed length m, computes a
cipher-text block of fixed length n. Block ciphers are one of the basic building blocks used in
many cryptographic systems. However, when used naively, by breaking up a message into blocks
and encrypting each separately, they leak information, since identical input produces identical
output. Thus an observer of the ciphertext can tell when two plaintext blocks are the same.
As a result they generally they are combined using several simple operations that randomize
the input into encrypted blocks. Procedures for doing this are called modes of encryption. In
order to be efficient, modes of encryption must use simple operations, and this makes them more
amenable to symbolic analysis. In particular Malozemoff et al.[5] and Hoang et al.[3] have found
easily checkable symbolic conditions on modes constructed using block ciphers and exclusive-or
that guarantee IND$-CPA security. IND$-CPA security is defined as indistinguishability of the
output of modes of encryption from random by a messagewise adaptive adversary that, while
not being able to compute the encryption function itself, plays a game in which it interacts
multiple times with one of two oracles. One is an encryption oracle that, after receiving all the



blocks of a plaintext message outputs the corresponding ciphertext message. The other, given
the same input from the adversary, outputs the corresponding number or random blocks. At
the end of the game, the adversary must guess which oracle it was interacting with. It wins
if it guesses correctly. The mode is secure if the probability of the adversary’s winning differs
from random by a negligible function of the security parameter η, that is it is less than 1/c−η,
where c is a constant and η is the block length in bits.

In our own work we extend [3, 5] by 1) providing a symbolic criterion that not only guarantees
security when satisfied but demonstrates an attack when not, and 2) applying the criterion
to a stronger version of indistinguishability IND$-BCPA in which the game is played by a
blockwise adaptive adversary that receives each ciphertext block from the oracle immediately
after submitting a plaintext block. IND$-BCPA is known to be strictly stronger than IND$-
CPA. For example, the cipher block chaining mode (see below) is IND$-CPA-secure but not
IND$-BCPA-secure.

The interesting point from a unification perspective is that both IND$-CPA and IND$-BCPA
hold if and only if the adversary cannot force the oracle to return two identical plaintext blocks
with nonnegligible probability. When this is represented at the symbolic level it becomes a
unification problem: can the adversary produce plaintext that unifies two blocks returned by
the oracle? Note that this is a unification problem with constraints, however. When computing
a unifier, the adversary cannot apply the encryption function itself. The only encrypted terms
it can use are the encrypted blocks returned by the adversary.

Consider the example of Cipher Block Chaining, one of the oldest modes of encryption. It
is defined as follows, where Pi is the i’th plaintext block, Ci is the i’th ciphertext block, IV is
a randomly generated block known as the initialization vector, and ⊕ is bitwise exclusive-or.

C0 = IV, C1 = f(IV ⊕ P1), . . . , Ck = f(Ck−1 ⊕ Pk)

To demonstrate the fact that it is not IND$-BCPA, consider the following sequence of mes-
sages, where the xi are variables standing for plaintext submitted by the adversary, and the
other terms are computed by an oracle executing the mode of encryption algorithm.

[iv, x1, f(x1 ⊕ iv), x2, f(x2 ⊕ f(x1 ⊕ iv))]

The adversary can cause the two ciphertext blocks to be the same if it sets x2 = x1 ⊕ iv ⊕
f(x1 ⊕ iv). Thus, the adversary is able to unify f(x1 ⊕ iv) and f(x2 ⊕ f(x1 ⊕ iv)). However, if
the adversary had only been able to see the two ciphertext blocks and iv after it had sent the
two plaintext blocks, it would not have been able to perform this unification, since it would not
has have seen iv, or f(x1 ⊕ iv) at the time it computed x2.

In [6], we explore the problem of symbolic criteria for security of modes of encryption against
blockwise adaptive adversaries, and reduce it to a linear algebra problem with constraints via
a variant of the Baader-Schulz [1] combination procedure. Baader-Schulz works by dividing
a unification problem in the joint theory into two problems, one in each component theory.
The problems are solved separately and then combined. In our case the two problems are the
⊕ theory for the adversary, and a solved form problem in the full theory for the oracle. The
procedure and proofs sketched in this abstract apply to the symbolic adversary only, but we
have also constructed a soundness and completeness proof for the probabilistic polynomial time
adversary used in cryptography.

Let (TΣ(X ), E) be the term algebra such that Σ = {f/1,⊕/2, 0/1, r1/0, . . . , rk/0}, and let E
be the equational theory defined by (R]AC), where R = {x⊕ 0 = x, x⊕x = 0, x⊕x⊕ y = y}.
In the following, all unification problems are defined over (TΣ(X ), E).



Given a mode of encryption, we begin with a sequence of the form [q0, q1, . . . , qm] describing
the interaction of the adversary with the oracle encrypting messages using that mode, where
each qi is a either a variable (standing for a plaintext block input by the adversary), or qi ∈
(TΣ(X ), E) is rooted in f (standing for a ciphertext block returned by the oracle), and the only
variables appearing in non-variable qi are variable terms qj such that j < i. We call the such
a sequence a mode of encryption (MOE) frame and the collection of all possible MOE frames
generated by a given mode a MOE program. Pick two f -rooted terms s1 and s2 from the MOE
frame, and let S = {s1 =? s2} be the corresponding unification problem. In the following, we
use the notation zt to stand for a variable that replaces a term t.
Step 1: We convert S into a derived system S2 as follows. For any term t ∈ (TΣ(X ), E), we
define pure(t) recursively as follows:

pure(z) = z pure(r) = zr pure(f(t)) = zf(t) pure(g ⊕ t) = pure(g)⊕ pure(t)

where z is a variable, r is a constant, and g is a variable, constant, or f -rooted term. We now
define S2 as follows:

1. If t = f(t′) is an f -rooted subterm of s1 or s2, add zf(t′) =? f(zt
′
) to S2 and also add

zt
′

=? pure(t′) to S2 if t′ is ⊕-rooted.

2. If r is a constant, add zr = r to S2.

3. Add zs1 =? zs2 to S2.

We characterize the variables of S2 as follows. If x is a variable standing for a term created by
the adversary, we call it an adversarial variable. If y = yf(t) or yc, where c is a constant, we call
y an f -variable. If w = wt1⊕...⊕tn where n > 1, we call w an ⊕ variable. If z is an f -variable
or ⊕-variable, we call it an oracle variable

Step 2: We define the relation <O on the variables of S2 to be the relation defined by 1)
x <O zt if the adversarial variable x is a subterm of t, and 2) for any two oracle variables zt1

and zt1 , zt1 <O z
t2 if t1 is a subterm of t2.

We define the relation <A on the adversarial and f -variables of S2 by 1) yf(t) <A x if x is
an adversarial variable, and f(t) is sent by the oracle to the adversary before x is sent by the
adversary to the oracle, and 2) for any two adversarial variables xi and xj , xi <A xj if and
only if xi is sent by the adversary to the oracle before xj .

It is possible to show that the transitive closure of <O ∪ <A is a suborder of a total order.
Thus, in particular, it contains no cycles.

Step 3: Choose a partition P of the variables of S2. We let IP to be the set of equations
zi =? zj such that zi and zj are in the same equivalence class in P and zi 6= zj . We let
SP = S2 ∪ IP . Note that IP is always nonempty, because it contains the equation ys1 =? ys2 .

Let SA,P be the set of all equations ↓R,AC (
︷︸︸︷
zi ⊕

︷︸︸︷
zj ) =? 0 such that zi =? zj ∈ IP , where︷︸︸︷

z = z if z is an adversarial or f -variable, and
︷︸︸︷
z = pure(t) if z = wt where wt is an

⊕-variable. Let SO be S2 \ {zs1 =? zs2}. Note that zs1 =? zs2 ∈ SA,P . Note that SA,P ∪ SO is
equivalent to S2 ∪ IP , that SO describe’s the oracle’s program, and that V ar(SA,P ) consists of
adversarial and f -variables, and Sym(SA,P ) = {⊕}.

.

Step 4: For each f -variable yti ∈ S2, we define EO,P (yti) to be the set of all f -variables ytj

such that yti and ytj are in the same element of the partition P . We then define a choosing
function π on the f -variables of S2 to be



1. if EO,P (yti) contains an f -variable ytj where tj is sent by the oracle to the adversary, let
πyti be the earliest such term sent that appears in EO,P (yti);

2. else, pick an arbitrary ytj ∈ EO,P (yti) to be π(y) for all y ∈ EO,P (yti).

We then let πSA,P be the unification problem obtained by replacing each variable yti appearing
in SA,P with πyti and then reducing the result to normal form.

Step 5: Let SP = πSA,P ∪ SO where π is a choosing function. We define the MOE solved
form of M(πSA,P ) as follows. Let πSA,P

′ be the system of equations obtained by first writing

each equation of πSA,P in the form (
∑k−1
j=0 ⊕αi,jxk−j) =? (

∑m
j=1⊕βi,jytj ), where x1, . . . , xm

are the adversarial variables in SA,P in the order in which they are sent by the adversary, and
yt1 . . . , ytm are the y-variables of of πSA,P , and then converting the problem to reduced row
echelon form in the x-variables. This means that each equation in πSA,P

′ is in one of the
following forms:

1. 0 =? 0;

2. xi ⊕ (
∑i−1
j=1⊕α′jxi−j) =?

∑n
j=1⊕β′i,jytj for a unique 1 ≤ i ≤ m, where at most one such

equation exists for each xi, or ;

3.
∑n
j=1⊕β′i,jytj =? 0 where at least one β′i,j = 1.

In the MOE solved formM(πSA,P ), the equations containing adversarial variables are replaced

by the equations xi =? (
∑i−1
j=1⊕α′jxi−j) ⊕ (

∑n
j=1⊕β′i,jyj), and any equations 0 =? 0 are

removed.

We say that the MOE solved formM(πSA,P ) is well-ordered if every equation is of the form

xi =? (
∑i−1
j=1⊕α′jxi−j)⊕ (

∑n
j=1⊕β′i,jyj) such that β′i,j = 1 implies yj <A xi.

Theorem. A mode of encryption is IND$-BCPA secure if and only if its MOE program contains
no MOE frame φ with two terms s1 and s2 sent by the oracle in φ, such thatM(πSA,P ) is well-
ordered. where S = {s1 =? s2}. Moreover, ifM(πSA,P ) is well-ordered, we can instantiate φ to
a specification of an attack by applying the following substitution Θ to the adversarial variables
xi in the order which they are sent by the adversary:

For i = 1 to n do

1. If xi =? ⊕(
∑i−1
j=1⊕α′jxi−j)⊕(

∑n
j=1⊕β′i,jytj ∈M(πSA,P ), then Θx1 = Θ((

∑i−1
j=1⊕α′jxi−j)⊕

(
∑n
j=1⊕β′i,jtj));

2. Else Θxi = 0.

The idea of the proof in the symbolic model is that, if M(πSA,P ) is not well-ordered,

there is an equation xi =? (
∑i−1
j=1⊕α′jxi−j) ⊕ (

∑n
j=1⊕β′i,jyj) and a j such that β′i,j = 1 and

yj 6<A xi. Thus, by the construction of the choosing function, in order to compute σ(xi ⊕∑i−1
j=1⊕α′jσxi−j) =

∑n
j=1⊕β′i,jσyj , the adversary must compute a term σyj = σf(tj) that

it has not yet seen. Conversely, if M(πSA,P ) is well-ordered, then Θ is computable by the
adversary.

The proof in the cryptographic model is similar to the proof in the symbolic model, ex-
cept that some complications introduced by the fact that the unifiers are now probabilistic
polynomial-time functions need to be dealt with.



As an example, consider the sequence [r1, x1, f(x1⊕r1), x2, f(x2⊕f(x1⊕r1))], and suppose
we want to see if the adversary can compute a unifier of f(x1⊕ r1) and f(x2⊕ f(x1⊕ r1)). We
first apply Step 1 to convert S to the problem

yr1 =?r1 wx1⊕r1 =?x1 ⊕ yr1 yf(x1⊕r1) =?f(wf(x1⊕r1))

wx2⊕f(x1⊕r1) =?x2 ⊕ yf(x1⊕r1) yf(x1⊕r1) =?yf(x2⊕f(x1⊕r1))

Applying Step 2, we choose to identify wx1⊕r1 and wx2⊕f(x1⊕r1), which is indeed necessary in
order to solve yf(x1⊕r1) =? yf(x2⊕f(x1⊕r1)). We obtain

yr1 =?r1 wx1⊕r1 =?x1 ⊕ yr1 yf(x1⊕r1) =?f(wf(x1⊕r1))

wx2⊕f(x1⊕r1) =?x2 ⊕ yf(x1⊕r1) yf(x1⊕r1) =?yf(x2⊕f(x1⊕r1) x1 ⊕ yr1 =?x2 ⊕ yf(x2⊕f(x1⊕r1))

Applying Step 3 we obtain the ordering x1 <A x2, yr1 <A x1, yr1 <A x2, and yf(r1⊕x1) <A x2.
We then apply Step 4 to obtain two systems of equations. System (1) describes the oracle

program, and System (2) defines the system of equations the adversary must solve.

yr1 =?r1 wx1⊕r1 =?x1 ⊕ yr1

yf(x1⊕r1) =?f(wf(x1⊕r1)) wx2⊕f(x1⊕r1) =?x2 ⊕ yf(x1⊕r1) (1)

yf(x1⊕r1) =?yf(x2⊕f(x1⊕r1) x1 ⊕ yr1 =?x2 ⊕ yf(x2⊕f(x1⊕r1)) (2)

Applying Step 5, we note that the choosing function is πyf(x2⊕f(x1⊕r1) = yf(x1⊕r1), and we
convert the system to MOE solved form x2 =? x1 ⊕ yr1 ⊕ yf(x1⊕r1).

To solve System (2,) we note that {x2 =? x1 ⊕ yr1 ⊕ yf(x1⊕r1)} is well-ordered, so that
σx2 = x1⊕ yr1 ⊕ yf(x1⊕r1) is computable by the adversary. Combining the solutions to the two
systems, we obtain σx1 = x1, σx2 = x1⊕yr1⊕yf(x1⊕r1), and σzt = t for each oracle variable zt.
Computing the oracle’s substitution to eliminate the variables introduced in Step 1, we obtain

σx1 = x1, σx2 = x1 ⊕ r1 ⊕ f(x1 ⊕ r2).

On the other hand, if we are given the sequence [x1, x2, r1, f(x1 ⊕ r1), f(x2 ⊕ f(x1 ⊕ r1))]
we find that the adversary cannot compute the unifier of the two terms f(x1 ⊕ r1) and f(x2 ⊕
f(x1 ⊕ r1). First, we note that unifying the two terms forces us to set wx1⊕r1 =? wx2⊕f(x1⊕r1 ,
giving us same equation as before: : x2 =? x1 ⊕ yr1 ⊕ yf(x1⊕r1). However, since there are no
terms sent by the oracle before x2 is sent by the adversary, there is no partition of V ar(S2)
that can turn this into a well-ordered equation.

We list some open problems below.

1. How do we choose likely candidate pairs of terms to be unified, and rule out unsuitable
ones? Are there any shortcuts in specific cases?

2. Can the efficiency of the algorithm be improved, e.g. by intelligent choice of partitions? More
generally, are there more efficient unification algorithms guaranteeing the same constraints?

3. We may want to extend these results to modes of encryption that are not restricted to
returning f -rooted terms; for example, they could return ⊕-sums of f -rooted terms. The
problem in that case goes beyond finding unifiers of f -rooted terms to finding substitutions
that induce linear relations between values returned by the mode. What is the best way of
searching for these?



4. Can this algorithm be applied or extended to the analysis of other types of cryptosystems?
In particular, the symbolic Linicrypt model of Carmer and Rosulek [2] is based, similarly to
ours, on splitting the security problem into a linear algebra problem solved by the adversary and
a set of constraints imposed by the oracle. It has been used in [2] to decide security of a class
of encryption algorithms called garbled circuits, in which principals compute a joint output
without either revealing their input to each other. However, although the Linicrypt model
allows for adaptive adversary, the algorithm in [2] assumes a very weak adaptive adversary
that can pick adaptively from a set of ciphertexts, but cannot introduce plaintext input itself.
Exploring the Linicrypt model may provide further applications for our approach to reasoning
about stronger adaptive adversaries.

5 These results may possibly be extended to theories that are not cryptographically sound or
complete. One example involves the increment by one function inc which is used to implement
secure counter mode, which is known to be secure against blockwise adaptive adversaries. The
inc function, when combined with ⊕ results in a term algebra which has no unambiguous
translation to the computational level, since inc(r) = r ⊕ 1 with probability 1/2 for random r.
This problem is dealt with in [5] by restriction to cases where this ambiguity can be avoided.
This requires a separation of the two operations so that they do not interact with each other.
This introduces another kind of constraint. Can one make use of these constraints to develop
symbolic algorithms and modes of encryption for which they can be used to decide security?

6 Looking beyond the unification problem, we consider the complexity of deciding security at
the symbolic level. Modes of encryption are generally defined recursively. However, the problem
of security for recursively defined protocols using exclusive-or is not that well understood. In
[4] Küsters and Truderung consider the decidability of the secrecy problem (related, although
not identical, to our security criterion) for recursive protocols using a theory that includes
encryption/decryption, cryptographic hashes, concatenation/deconcatenation, and exclusive-
or. Secrecy is shown to be undecidable in the bounded session model, and only becomes
decidable for ⊕-linear protocols, which require that, whenever the ⊕ function appears, at
least one argument should not depend on adversarial input, a restriction that would rule out
most most practical modes of encryption. On the other hand, the undecidability proof makes
extensive use of the concatenation operator, as well as the ⊕ and hash operators. If the
concatenation operator is removed, the decidability result might change.
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