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Abstract

We compare two kinds of unification problems: Asymmetric Unification and Disunification,
which are variants of Equational Unification. Asymmetric Unification is a type of Equational Unifi-
cation where the right-hand sides of the equations are in normal form with respect to the given term
rewriting system. In Disunification we solve equations and disequations with respect to an equational
theory. We contrast the time complexities of both for the case with free constants and show that the
two problems are incomparable: there are theories where one can be solved in polynomial time while
the other is NP-hard. This goes both ways. The time complexity also varies based on the termination
ordering used in the term rewriting system.

1 Introduction and Motivation

This is a short introductory survey on two variants of unification, namely asymmetric unification [9]
and disunification [2, 7]. We contrast the two in terms of their time complexities for different equational
theories, for the case where terms in the input can also have free constant symbols. Asymmetric unifi-
cation is a new paradigm comparatively, which requires one side of the equation to be irreducible [9],
while disunification [7] deals with solving equations and disequations. Complexity analysis has been
performed separately on asymmetric unification [4, 10] and disunification [2, 6], but not much work
has been done on contrasting the two paradigms. In [9], it was shown that there are theories which are
decidable for symmetric unification but are undecidable for asymmetric unification, so here we investi-
gate this further. Initially, it was thought that the two are reducible to one another [10], but our results
indicate that they are not at least where time complexity is concerned. In our last section we show that
the time complexity of asymmetric unification varies depending on the symbol ordering chosen for the
theory. Due to lack of space we have shortened some of the proof details. They can be found in our tech
report [18].

2 Notations and preliminaries

We assume the reader is accustomed with the terminologies of term rewriting systems (TRS), equational
rewriting [1], unification and equational unification [3]. A term rewriting system [1] is a set of rewrite
rules, where a rewrite rule is an identity / ~ r such that [ is not a variable and Var(l) 2 Var(r). We
denote this by / — r. These oriented equations are commonly called rewrite rules. The equational theory
& (R) associated with a term rewriting system R is the set of equations obtained from R by treating every
rule as a (bidirectional) equation. An equational term rewriting system consists of a set of identities E
(which often contains identities such as Commutativity and Associativity) and a set of rewrite rules R.
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Definition 1. Given a decomposition (X, E,R) of an equational theory, a substitution G is an asymmetric

R, E-unifier of a set Q of asymmetric equations {s ;zj fy ..y Sy %Z tn} iff for each asymmetric equation

Si zj t;, 0 is an (E UR)-unifier of the equation s; =’ t;, and 6 (t;) is in R, E-normal form. In other words,
1

o (si) —RE o(t).

(Note that symmetric unification can be reduced to asymmetric unification. Thus we could also include
symmetric equations in a problem instance.)

Example: Let R = {x+a — x} be a rewrite system. An asymmetric unifier 6 for {u+v =’ v+w}
modulo this system is 8 = {u — v, w — v}. However, another unifier p = {u — a,v+— a,w— a} is
not an asymmetric unifier. But note that 8 < p, i.e., p is an instance of 0, or, alternatively, 6 is more
general than p. This shows that instances of asymmetric unifiers need not be asymmetric unifiers.

Definition 2. A disunification problem deals with solving a set of equations and disequations, with

. 9 2 2 2
respect to an equational theory E, £ = {s1 =g t1,...,5, g ta} U {8,001 #E tascts -+ Snem ZE bism )
1.4 solution to thls.problem is a substitution © such that: o (s;) ~ o(t;) and 0 (s, ;) #f 0(1, ;) where
i=1,...,nand j=1,...,m.

Example: Given E = {x+a ~ x}, a disunifier 6 for {u+v % v+u}is 6 ={u+— a,v+— b}.

If a4 x =~ x is added to the identities E, then 8 = {u + a, v — b} is clearly no longer a disunifier
modulo this equational theory.

3 A theory for which asymmetric unification is in P whereas dis-
unification is NP-complete

Let R, be the following term rewriting system: h(a) = f(a,c) h(b) — f(b,c). We show that asym-
metric unifiability modulo this theory can be solved in polynomial time. The algorithm is outlined in
our tech report [18]. However, disunification modulo R, is NP-hard. The proof is by a polynomial-time
reduction from the three-satisfiability (3SAT) problem. Let U = {x1,x2,...,x,} be the set of variables,
and B = {C,Cy,...,Cy} be the set of clauses. Each clause Cy, where 1 < k < m, has 3 literals.

We construct an instance of a disunification problem from 3SAT. There are 8 different combina-
tions of T and F assignments to the variables in a clause in 3SAT, out of which there is exactly one
truth-assignment to the variables in the clause that makes the clause evaluate to false. For the 7 other
combinations of T and F assignments to the literals, the clause is rendered true. We represent T by a
and F by b. Hence for each clause C; we create a disequation DEQ; of the form

f(xp7f(x£hxr)) ?éRl f(dlvf(dZad3))

where x,x4,x, are variables, di,d>,d3 € {a,b}, and (di,d>,d3) corresponds to the falsifying truth as-
signment. For example, given a clause C; = x, V X, V x,, we create the corresponding disequation
DEQy = f(xp, f(xg,%)) #r, f(b, f(a,b)). We also create the equation (x;) ~g, f(x;,c) for each vari-
able x;. These make sure that each x; is mapped to either a or b. Thus for B, the instance of disunification
constructed is

§ = {hx1) & fx1,0), hx2) = f(x2,€), o, h(xa) % f(5n.¢) } U {DEQ1.DEQs.....DEQy |
Example: Given U = {xj,xp,x3} and B = {x; VX3 Vx3, X] VX; Vx3}, the constructed instance of
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disunification is

{h(x1) = f(x1,¢), h(x2) = f(xa2,¢), h(x3) = f(x3,¢), f(x1,f(x2,%3)) % f (b, f(a,b)),
fx1, f(x2,x3)) % f(a, fla,b))}

Note that membership in NP is not hard to show since R, is saturated by paramodulation [17].

4 A theory for which disunification is in P whereas asymmetric
unification is NP-hard

The theory we consider consists of the following term rewriting system R, :

x+x—0 x+0—x x+(+x)—y
and the equational theory AC:

(x+y)+z=x+(y+2z) xtyRy+x
This theory is called ACUN because it consists of associativity, commutativity, unit and nilpotence. This
is the theory of the boolean XOR operator. An algorithm for general ACUN unification is provided by
Zhigiang Liu [16] in his Ph.D. dissertation [16]. (See also [9, Section 4].)

Disunification modulo this theory can be solved in polynomial time by what is essentially Gaussian
Elimination over Z,. Suppose we have m variables x1,x,...,X,, and n constant symbols c,ca,...,cp,
and g such equations and disequations to be unified. We can assume an ordering on the variables and
constants x; > xp > ... > X, > €] > ¢p > ... > ¢,. We first pick an equation with leading variable x|
and eliminate x; from all other equations and disequations. We continue this process with the next
equation consisting of leading variable x,, followed by an equation containing leading variable x3 and
so on, until no more variables can be eliminated. The problem has a solution if and only if (i) there are
no equations that contain only constants, such as ¢3 + c4 & ¢s, and (ii) there are no disequations of the
form 0 % 0 at this point. This way we can solve the disunification problem in polynomial time using
Gaussian Elimination over Z;.

Example: Suppose we have two equations x| +xp +x3+c¢1+¢2 z,?ez AC Oand x| +x3+c2 4¢3 z,?ez AC
0, and a disequation x, 951732, ac 0.

Eliminating x; from the second equation, results in the equation x +c¢j +c3 ~ Ry AC 0. We can now
eliminate x, from the first equation, resulting in x; +x3 4+ ¢z +c¢3 =~ R, AC 0. x, can also be eliminated
from the disequation x, % R,.AC 0, which gives us ¢j + ¢3 ¢Rz~ 4c 0. Thus the procedure terminates
with x; +x3 + ¢ +¢3 %R27AC 0, x+c1+c¢3 ’@RZ,AC 0, ci+c3 %RTAC 0. Thus we get x, %RZAC
c1+c3, x1+x3 ~R,AC €2 + ¢3 and the following substitution is clearly a solution:

{xl = C2, X2 = C1 +C3, X3 I—>C3}

However, asymmetric unification is NP-hard. The proof is by a polynomial-time reduction from the
graph 3-colorability problem. Let G = (V, E) be a graph where V = {v,v,v3,...,v,} are the vertices,
E ={ej,ez,e3,...,ey} the edges and C = {cy,c2,c3} the color set with n > 3. G is 3-colorable if none
of the adjacent vertices {v;,v;} € E have the same color assigned from C. We construct an instance of
asymmetric unification as follows. We create variables for vertices and edges in G: for each vertex v;
we assign a variable y; and for each edge ¢, we assign a variable z;. Now for every edge e, = {v;,v,} we

3
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create an equation EQy =c1 +c2 4¢3 zz ¥i +j+zx. Note that each z; appears in only one equation.
Thus for E, the instance of asymmetric unification problem constructed is

§={EQ1,EQ,, ... EQu}

Example: Given G = (V,E),V = {vi,v2,v3,va}, E = {e1,e2,e3,ea}, where ey = {vi,v3},e2 = {vi,n2},
e3 = {va,v3},e4 = {v3,va} and C = {cy, 2,3}, the constructed instance of asymmetric unification is

EQ) = citartea =) yi+y3+2,EQ = citarte =) yi+ntn,
EQs = cit+erte =) ya+y3+23,EQs = ci+ert+e3 &) y3+yatu

Now suppose the vertices in the graph G are given this color assignment: 6 = {v| — ¢, —
€2,v3 —> ¢3,v4 — ¢y }. The asymmetric unifier is

{)’1 > C1, Y2 F2> €3, Y32 €2, 21 F> €3, 22 > €2, 23 = C1, Z4'—>C3}-

We have not yet looked into whether the problem is in NP, but we expect it to be so.

S A theory for which ground disunifiability is in P whereas asym-
metric unification is NP-hard

This theory is the same as the one mentioned in previous section, ACUN, but with a homomorphism
added. It has an AC-convergent term rewriting system, which we call R;:

x+x—0 x+0—x x+(+x)—y
h(x+y) = h(x) +h(y) h(0) — 0

5.1 Ground disunification

Ground disunifiability [2] problem refers to checking for ground solutions for a set of disequations and
equations. The restriction is that only the set of constants provided in the input, i.e., the equational
theory and the equations and disequations, can be used; no new constants can be introduced.

We show that ground disunifiability modulo this theory can be solved in polynomial time, by reduc-
ing the problem to that of solving systems of linear equations. This involves finding the Smith Normal
Form [11, 14, 13]. This gives us a general solution to all the variables or unknowns.

Suppose we have m equations in our ground disunifiability problem. We can assume without loss of
generality that the disequations are of the form z # 0. For example, if we have disequations of the form
e1 # ey, we introduce a new variable z and set z = e¢] + ep and z # 0. Let n be the number of variables
or unknowns for which we have to find a solution.

For each constant in our ground disunifiability problem, we follow the approach similar to [12], of
forming a set of linear equations and solving them to find ground solutions. We use #*x to represent
the term A(h(...h(x)...)) and H* = h¥1x+ B2 x + .- + h*nx is a polynomial over Z[h]. We have s; =
Hijixi +Hpxo+ ...+ Hinxn, Hij € Zsh] and t; = Hi/lcl +H;2c2 +... —|—Hl;nc17 Hlfj € Z[h],
where, {c|,...c,} is the set of constants and {x{,...x,} is the set of variables. For each constant ¢;,1 <
i <1, and each variable x, we create a variable x“/. We then generate, for each constant ¢;, a set of linear
equations S of the form AX =’ B with coefficients from the polynomial ring Z;[h]. The solutions are
found by computing the Smith Normal Form of A. The procedure is provided in our tech report [18].
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5.2 Ground Asymmetric Unification

However, asymmetric unification modulo Ry is NP-hard. Decidability can be shown by automata-
theoretic methods as for Weak Second Order Theory of One successor (WS1S) [8, 5].

In WS1S we consider quantification over finite sets of natural numbers, along with one successor
function. All equations or formulas are transformed into finite-state automata which accepts the strings
that correspond to a model of the formula [15, 19]. This automata-based approach is key to showing
decidability of WS1S, since the satisfiability of WS1S formulas reduces to the automata intersection-
emptiness problem. We follow the same approach here.

For ease of exposition, let us consider the case where there is only one constant a. Thus every ground
term can be viewed as a set of natural numbers. The homomorphism h is treated as a successor function.
Just as in WSS, the input to the automata are column vectors of bits. The length of each column vector
is the number of variables in the problem.

0 i

Note that the 4 operator behaves like the symmetric set difference operator. We illustrate how automata
is constructed for one equation or formula P = Q + R in standard form, with the case of one constant a.
The homomorphism h is treated as successor function.

(8).().(0)-()
start%@

0 0 0 0 1 1 1 0
(6)-(2): () (1) (5)- (¢)- (2)- (1)
0 1 0 1 0 1 0 1
Let P;,Q; and R; denote the i bits of P,Q and R respectively. P; has a value 1, when either Q; or R;
has a value 1. We need 3-bit alphabet symbols for this equation. For example, if R, =0, Q; = 1, then
1

P
P, = 1. The corresponding alphabet symbol is (%ﬁ) = ((l))
2

0\ /0 1
Hence, only strings with the alphabet symbols { (8) , ({) , ((1)) , (é) } are accepted by this automaton.

Rest of the input symbols like { (g), (D, (2)7 (é) } go to the dead state D as they violate the XOR

5
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property. Note that the string ((1)) (é) is accepted by automaton. This corresponds to P =a+ h(a).
Q=h(a)and R=a.

Once we have automata constructed for all the formulas, we take the intersection and check if there
exists a string accepted by corresponding automata. If the intersection is not empty, then we have a
solution or an asymmetric unifier for set of formulas. This technique can be extended to the case where
we have more than one constant. Refer to our tech report [ 18] for more automata construction for single
constant and details on more than one constant.

The exact complexity of this problem is open.

6 A theory for which time complexity of Asymmetric Unification
varies based on ordering of function symbols

Let E, be the following equational theory:

gla)~ f(a,a,a) g(b) ~ f(b,b,b)
and let R4 denote the following term rewriting system:
fla,a,a) = g(a) f(b;b,b) — g(b).

This is clearly terminating, as can be easily shown by the lexicographic path ordering (Ipo) [1] us-
ing the symbol ordering f > g > a > b. We show that asymmetric unification modulo the rewrit-
ing system R, is NP-complete. The proof is by a polynomial-time reduction from the Not-All-Equal
Three-Satisfiability (NAE-3SAT) problem [4]. Let U = {xj,x2,...,x,} be the set of variables, and
C ={Cy,Cy,...,Cy} be the set of clauses. Each clause Cy, has to have at least one true literal and at
least one false literal.

We create an instance of asymmetric unification as follows. We represent T by a and F by b. For
each variable x; we create the equation f(x;,x;,x;) ~R, g(x;). These make sure that each x; is mapped to
either a or b. For each clause C; = x, V x, V x;, we introduce a new variable z; and create an asymmetric
equation EQ; : z; %1 f(xp,Xg,x,). Thus for any C, the instance of asymmetric unification problem
constructed is

S = {f(xl,xl,xl) ~g(x1), ., f(XnXn, Xn) %g(xn)} U {EQl,EQz,...,EQm}

Example: Given U = {xl,X2,X3,X4} and C = {x1 VxaVx3, x1VxaVxa, x1Vx3Vxg, x2Vx3 \/)C4} the
constructed instance of asymmetric unification . is

{f(xl,m,xl) ~g(x1), flxa,x2,x2) = g(x2), f(x3,%3,%3) = g(x3), f(x4,%4,%4) ~ g(xa),
a o~ fxxs), o &) fx,x), 3~ f(xxsx), a &) f(xz,x3,x4)}

Again, membership in NP can be shown using the fact that R, is saturated by paramodulation [17].

However, if we orient the rules the other way, i.e., when g > f > a > b, we can show that asymmetric
unifiability modulo this theory can be solved in polynomial time, where our term rewriting system Rs is
¢la) = f(a.a,a) g(b) = f(b,b,b)

The algorithm is outlined in our tech report [18].

Acknowledgements: We appreciate and thank the referees for their comments which were very useful
in improving the paper.
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