
Undecidability of Nominal Unification with

Atom Substitutions

Jesús Domı́nguez and Maribel Fernández

Department of Informatics, King’s College London, UK
{jesus.dominguez alvarez,maribel.fernandez}@kcl.ac.uk

Abstract

We consider a syntax for nominal terms extended with non-capturing atom substitution
and show that unification over such terms is undecidable. The proof of undecidability is
obtained by reducing Hilbert’s tenth problem to unification of extended nominal terms,
adapting Goldfarb’s proof of undecidability of second-order unification.

1 Introduction

Nominal unification is a well-established generalisation of first-order unification that deals with
variable binding using atom permutations and freshness constraints. Nominal terms are charac-
terised by the distinction, at the syntactic level, between atoms, which can be abstracted but are
not subject to substitution, and meta-variables, or simply variables, which behave like first-order
variables but may be decorated with atom permutations. Urban, Pitts and Gabbay [UPG04]
showed that unification of nominal terms, that is, unification modulo α-equivalence, is decidable
and gave an algorithm to find the most general solution to any (unifiable) nominal unification
problem. Efficient algorithms exist which solve the nominal unification problem in polynomial
time [CF08b, LV10, CF10].

Nominal unification has applications in logic programming [CU04, BF07] and term rewrit-
ing [FGM04, FG07], among others. Matching is a form of unification where one of the terms is
ground, that is, without variables, or its variables are regarded as constants. Nominal matching
is efficient: linear time algorithms are available [CF09]. Various versions of nominal matching
have been used in nominal rewriting [FG07] and functional programming languages involving
names and binders (for instance, FreshML [PG00, SPG03, Pot07], Cαml [Pot06]). However,
the capture-avoiding substitution used in many systems of interest has, thus far, needed to be
encoded by explicit rewrite rules or axioms for the syntax in question. To address this issue, an
extension of nominal syntax with a primitive capture-avoiding atom substitution was presented
in [FFST15], along with a dependent type system defined over such extension. Here we adopt
this extended syntax and show that unification is undecidable by providing an effective method
to reduce Hilbert’s tenth problem to nominal unification extended with atom substitutions. The
proof is based on that given by Goldfarb [Gol81] to show the undecidability of second order
unification. Nominal matching extended with atom substitution remains decidable (albeit no
longer unitary); an algorithm is given in [Dom17], together with a characterisation of a wide
class of terms for which matching is unitary. These results have applications in rewrite-based
models of computation and open the way for the development of powerful reasoning frameworks
based on nominal syntax.

Related Work Our theory of extended nominal terms is taken from [FFST15]. Capture-
avoiding atom substitution was previously studied in the context of nominal algebra by Gabbay
and Mathijssen [GM09, GM08]. Unification and rewriting of nominal terms were introduced

Undecidability of Nominal Unification with Atom Substitutions Domı́nguez and Fernández

in [UPG04] and [FGM04, FG07] respectively. Cheney proved that a more general form than
nominal unification, called equivariant unification, is NP-complete [Che05]. Efficient nominal
unification algorithms were developed by Calvès and Fernández [CF08b, CF08a] and Levy
and Villaret [LV10]. Both approaches were later unified by Calvès [Cal13]. Kumar and Nor-
rish [KN10] also studied efficient forms of nominal unification, using triangular substitutions,
which are not necessarily idempotent. In [SKLV16], a nominal unification algorithm extended
with a recursive let (letrec) is defined, along with several nominal letrec matching algorithms
for variants, which all run in nondeterministic polynomial time. Relations between nominal
unification and higher-order pattern unification were studied in [Che05, LV10, LV12, DGM10].
An explicit substitution calculus for contextual type theory is described in [AP10], which dis-
tinguishes between variables, which can be bound and have a capture-avoiding substitution,
and meta-variables, which cannot be bound and for which substitution is possibly capturing.
They also provide an algorithm for definitional equality.

Goldfarb [Gol81] showed that second-order unification is undecidable, by reducing Hilbert’s
tenth problem to a unification problem for a second-order language. We have followed his
methodology to provide the proof of undecidability for nominal unification extended with atom
substitutions. In [Lev96], some cases of linear second-order unification are proved to be de-
cidable. Particularly the case where each variable occurs at most twice. In [Lev98, LV00] it
was proved that, under the same restriction, second-order unification is undecidable, along with
other decidable and undecidable subclasses of second-order unification problems with variable
occurrence restrictions. Such results are obtained by means of reducing simultaneous rigid
E-unification [GRS87], proved to be undecidable in [DV96], to second-order unification. Ad-
ditionally in [LV00], there is an undecidability proof of second-order unification by a direct
encoding from the halting problem for Turing machines.

2 Background

Fix countably infinite, pairwise disjoint, sets of atoms, a, b, c, . . . ∈ A; variables, X,Y, Z, . . . ∈
X ; and term-formers f, g, . . . ∈ F , each with a fixed arity. A permutation is a bijection
on A with finite domain, called the support of π, Support(π). A swapping is a particular
case, written (a b), where a maps to b, b maps to a and all other atoms c map to themselves.
Atom substitutions (or a-substitutions for short) ϑ, φ are mappings from atoms to terms
with finite domain, that is, the set of atoms such that ϑ(a) 6= a, written Dom(ϑ), is finite.
Permutations, a-substitutions and nominal terms with atom substitutions, or just terms
from now on, are generated by the grammar shown in Def. 2.1.

Definition 2.1. Syntax of terms.

π ::= Id | π(a b) ϑ, φ ::= Id | [a 7→ s]φ

s, t ::= a | φ|π·X | [a]s | fs | (s1, . . . , sn).

Function applications, fs, must respect the arity of the term-former. A moderated
variable φ|π·X is X ∈ X along with a suspended permutation π and a suspended atom
substitution φ. The final identity operator, Id, is commonly omitted from the syntax of both
permutations and a-substitutions. Write π-1 for the inverse of π. For example, if π = (a b)(b c)
then π(c) = a and c = π-1(a). A-substitutions are interpreted as simultaneous bindings,
abbreviated as [a1 7→ s1; . . . ; an 7→ sn]. Write ϑ−a1,...,an for the a-substitution ϑ with domain
Dom(ϑ) \ {a1, . . . , an}. The image of ϑ, written Img(ϑ), is the set of terms {ϑ(a) | a ∈
Dom(ϑ)}.

2

Undecidability of Nominal Unification with Atom Substitutions Domı́nguez and Fernández

Write V (t) for the set of variable symbols appearing in a term t; a ground term s is such
that V (s) = ∅. Write A(t) for the set of atoms appearing in a term t; this includes atoms in
the domain and image of a-substitutions as well as atoms in the support of permutations. We
omit the inductive definitions. Outer brackets are commonly omitted for V (·) and A(·) when
applied to tuples. We also use the notation V (·) (resp. A(·)) to denote the set of variables
(resp. atoms) in the domain (resp. image) of an a-substitution.

Example 2.2 (Terms). Let map, cons be term-formers. We then have the terms
map([a]F, cons(H,T)) and cons([a 7→ H]·F,map([a]F, T)).

For more examples, we refer the reader to [UPG04, FG07] for non-extended nominal terms
and [FFST15] for the extended case.

Definition 2.3 (Permutation action). Permutations apply to terms and a-substitutions. Write
◦ for composition of two permutations such that (π′ ◦ π)(a) = π′(π(a)).

π·a , π(a) π·[a]t , [π(a)]π·t π·ft , fπ·t π·(t1, . . . , tn) , (π·t1, . . . , π·tn)

π·(φ|π′·X) , (π·φ)̂ (π ◦ π′)·X where π·Id , Id π·([a 7→ t]φ) , [π(a) 7→ π·t](π·φ).

Call a#t a freshness constraint. Let ∆,∇, . . . range over sets of primitive constraints
of the form a#X; call such sets freshness contexts. Call s ≈α t an α-equivalence con-
straint. Write ∇ ` a#t and ∇ ` s ≈α t, called freshness and α-equivalence judgements
respectively, when a derivation exists using the syntax-directed rules from Def. 2.4 where, for
a-substitutions φ, φ′ and permutations π, π′, we abbreviate Dom(φ)∪Dom(φ′) as DomP (φ, φ′)
and Support(π)∪Support(π′) as SupportP (π, π′). We may drop set brackets in freshness con-
texts, for example, a#X, b#Y for {a#X, b#Y } and also write a, b#t (resp. a#s, t) instead of
a#t, b#t (resp. a#s, a#t).

Definition 2.4 (Freshness and α-equivalence judgements).

(#ab)

∇ ` a#b
(#[a])

∇ ` a#[a]s

∇ ` a#s
(#[b])

∇ ` a#[b]s

∇ ` a#s
(#f)

∇ ` a#fs∧
b∈(Dom(φ)∪{a})

(∇ ` a#φ(b) ∨ (π-1(b)#X ∈ ∇))

(#X)

∇ ` a#φ|π·X

∇ ` a#s1 · · · ∇ ` a#sn
(#tupl)

∇ ` a#(s1, . . . , sn)

(≈αa)

∇ ` a ≈α a
∇ ` s ≈α t

(≈α[a])

∇ ` [a]s ≈α [a]t

∇ ` s ≈α t
(≈αf)

∇ ` fs ≈α ft
∇ ` (b a)·s ≈α t ∇ ` b#s

(≈α[b])

∇ ` [a]s ≈α [b]t

∇ ` s1 ≈α t1 · · · ∇ ` sn ≈α tn
(≈αtupl)

∇ ` (s1, . . . , sn) ≈α (t1, . . . , tn)∧
a∈(DomP (φ,φ′)∪SupportP (π,π′))

(∇ ` φ(π(a)) ≈α φ′(π′(a)) ∨ (a#X ∈ ∇))

(≈αX).
∇ ` φ|π·X ≈α φ′|π′·X

The derivation rules are similar to the ones given in [FFST15], except rules (#X) and (≈αX).
In [FFST15], (#X) is divided into a pair of derivation rules, whereas in our version both rules
are combined by the conjunction normal form (CNF), generated over the set (Dom(φ) ∪ {a}).
Similarly, the premise of rule (≈αX) is here formed as a CNF instead of using the disagreement
set ds(∇, φ|π, φ′|π′) = {a | a ∈ (DomP (φ, φ′) ∪ SupportP (π, π′)) ∧ ∇ 6` φ(π(a)) ≈α φ′(π′(a))}

3

Undecidability of Nominal Unification with Atom Substitutions Domı́nguez and Fernández

as in [FFST15]. Def. 2.4 offers a more succinct approach by having fewer inference rules and
avoiding the use of auxiliary functions in premises, opting instead to show the expanded form
of such auxiliary functions. Recall that, unlike for non-extended nominal terms [UPG04], there
may exists more than one least set of primitive constraints logically entailing φ|π·X ≈α φ′|π′·X
(see [FFST15]). In the case where a-substitutions are Id, both rules (#X) and (≈αX) reduce to
their non-extended analogue as given in [FG07, Def. 6].

The relation ≈α is indeed an equivalence relation [FFST15].
The action of an a-substitution φ on a term t, written tφ, relies on a freshness context ∇

and therefore define over terms-in-context, written ∇ ` t, or simply ` t whenever ∇ = ∅.

Definition 2.5 (A-substitution action). Write • for a-substitution composition so that t(φ •
φ′) = (tφ)φ′.

∇ ` aφ , φ(a) ∇ ` (ft)φ , ftφ ∇ ` (t1, . . . , tn)φ , (t1φ, . . . , tnφ)

∇ ` (φ′|π·X)φ , (φ′ • φ)|π·X ∇ ` ([a]t)φ , [b]((a b)·t)φ−b where ∇ ` b#t, Img(φ).

A-substitutions work uniformly on α-equivalence classes of terms [FFST15]. Then, follow-
ing the notation above, capture-avoidance is guaranteed by selecting a distinct α-equivalent
representative of ∇ ` [a]t (i.e., ∇ ` [b](a b)·t since ∇ ` b#t, Img(φ)) prior to φ acting on
such term-in-context. Note that, there exists an infinite number of atoms which do not appear
in either [a]t or φ and, since variables have finite support [Pit03], one can augment the fresh-
ness context with the primitive constraints b#X for all X in (V (t) ∪ V (Img(φ))) and some
b ∈ (A \ (A(t) ∪ A(Img(φ)))) whenever required. In practice, one could start with a large
enough set of new atoms not appearing in the system under consideration in order to generate
a set of primitive constraints built from such atoms with respect to each variable in the system;
such a set would then be joined with the given freshness context before interacting with the
system. This approach is similar to the approach taken in [FG07, FFST15] and tacitly assumed
in the rest of the paper.

Variable substitutions, or just v-substitutions, are mappings from variables to terms
with finite domain, i.e., the set of variables such that σ(X) 6= X, written Dom(σ), is finite.
Write Img(σ) for the image of σ, that is, the set of terms {σ(X) | X ∈ Dom(σ)}. Variable
substitutions are generated by the grammar: σ, θ ::= Id | [X 7→ s]σ where Id is commonly
omitted; [X1 7→ s1] · · · [Xn 7→ sn] is interpreted as simultaneous bindings, abbreviated to [X1 7→
s1; . . . ;Xn 7→ sn] where the variables Xi are pairwise distinct. The action of v-substitutions
σ on a freshness context ∇ is defined as ∇σ = {a#σ(X) | X ∈ Dom(σ), a#X ∈ ∇}.

Definition 2.6 (V-substitution action). Write • for the composition of two v-substitutions
such that t(σ • σ′) = (tσ)σ′.

aσ , a ([a]t)σ , [a]tσ (ft)σ , ftσ (t1, . . . , tn)σ , (t1σ, . . . , tnσ)

(φ|π·X)σ , (π·σ(X))(φσ) where Idσ , Id ([a 7→ s]φ)σ , [a 7→ sσ](φσ).

Lemma 2.7. The action of v-substitutions σ commutes with both permutation action, ∇ `
π·(sσ) ≈α (π·s)σ, and a-substitution action, ∇ ` (sσ)ϑσ ≈α (sϑ)σ. Furthermore, v-substitution
action preserves # and ≈α in the following sense:

1. if ∆ ` ∇σ and ∇ ` a#s, then ∆ ` a#sσ;

2. if ∆ ` ∇σ and ∇ ` s ≈α t, then ∆ ` sσ ≈α tσ.

4

Undecidability of Nominal Unification with Atom Substitutions Domı́nguez and Fernández

Let C range over freshness and α-equivalence constraints. A constraint problem Cr is a
finite arbitrary set of such constraints. We abbreviate ∆ ` C1, . . . ,∆ ` Cn as ∆ ` {C1, . . . , Cn}.
The actions of permutations and substitutions and the functions V (·) and A(·) extend naturally
to constraints and constraint problems. The following is a corollary of Lem. 2.7.

Corollary 2.8. For any pair of freshness contexts ∇,∆, constraint problem Cr and v-substitution
σ, such that ∆ ` ∇σ we have that, if ∇ ` Cr, then ∆ ` Crσ. Similarly, ∇ ` Cr if and only if
∇ ` π·Cr.

Definition 2.9. A unification problem Pr is a constraint problem Cr where α-equivalence
constraints are now written as unification constraints s ?≈? t. A solution to Pr, if one
exists, is a pair (∆, σ) of a freshness context ∆ and a v-substitution σ such that ∆ ` Crσ.
Then, call σ a unifier of Pr and say Pr is unifiable.

Write U(Pr) for the set of all solutions to a unification problem Pr. (∆, σ) ∈ U(Pr)
is more general than (∆′, σ′) ∈ U(Pr), written (∆, σ) ≤ (∆′, σ′), if there exists some v-
substitution θ such that ∆′ ` (σ ◦ θ) ≈α σ′and ∆′ ` ∆θ. Then, (∆, σ) is a most general
solution if there is no (∆′, σ′) ∈ U(Pr) such that (∆′, σ′) < (∆, σ).

Similarly to nominal unification of non-extended terms [UPG04], solving a unification prob-
lem Pr involves finding a pair comprising of a v-substitution σ and a freshness context ∆ such
that ∆ ` Prσ. However, unlike non-extended nominal unification, there may be more than one
least set of primitive constraints ∆i such that ∆i ` Prσ. Moreover, in [UPG04], the unicity of
most general solutions was shown for non-extended nominal terms. This does not hold in the
presence of a-substitutions. For instance, the unification problem {[a 7→ c]·X ?≈? c} has solu-
tions (∅, [X 7→ a]) and (∅, [X 7→ c]) which are more general than any other solution (∇, σ) to the
problem; there is no v-substitution θ such that (∇, σ) ≤ (∅, [X 7→ a]) or (∇, σ) ≤ (∅, [X 7→ c]).
Also, neither (∅, [X 7→ a]) ≤ (∅, [X 7→ c]) nor (∅, [X 7→ c]) < (∅, [X 7→ a]). Accordingly, the
role of principality must be taken on, in general, by a complete set of solutions [BS01].

3 Undecidability of Extended Nominal Unification

To prove undecidability of extended nominal unification, we follow closely [Gol81] where Hil-
bert’s tenth problem, proved undecidable in [Mat70], is used to show the undecidability of
second-order unification. The main idea is to build unification problems for which a ground
unifier simulates addition or multiplication. Then, one can use such term language to generate
Diophantine equations.

Goldfarb numbers are inspired by Church numerals, λx.λf.f(f(. . . f(x))), dropping the
abstraction on f so that the representation is of second-order type. In nominal terms, we
denote Goldfarb numbers as tuples of atoms: (a, (a, . . . (a, c))) with n unabstracted occurrences
of atom a and one occurrence of atom c represents the natural number n. Then, we abbreviate
(a, (a, . . . (a, c))) as [n, a, c]; more generally, [n, a, t] represents the expression (a, (a, . . . (a, t)))
where n ≥ 0, t is a term belonging to the language defined in Def. 3.1. Goldfarb numbers are
exactly those that solve the extended nominal unification problem

{(a, [c 7→ a]·F) ?≈? [c 7→ (a, a)]·F}. (1)

Definition 3.1 (Term language L). Let X ,A be countable sets of variables and atoms re-
spectively (see Section 2), and consider an empty set of function symbols. The language L

contains all the nominal terms generated by the grammar given in Def. 2.1 with the exception
of abstraction terms, which are not part of L. We refer to such terms as L-terms.

5

Undecidability of Nominal Unification with Atom Substitutions Domı́nguez and Fernández

Informally, language L contains a restricted class of extended nominal terms with neither
function symbols nor abstraction terms. Such constraint on the grammar of extended terms and
the restriction to ground unifiers allows us to state that any unifier to Lem. 3.2 and Lem. 3.3
simulates addition and multiplication respectively. Intuitively, if unification of L-terms is proven
undecidable, it is easy to see that undecidability also holds for the general case.

Following a notation closer to that of Goldfarb’s term language, L-terms of form [n, a, t]
are now denoted as nat for any atom a ∈ A, L-term t and integer n such that n ≥ 0. Then,
[n, a, [m, a, t]] is thus denoted as n+mat.

Observe that, to simulate addition, Goldfarb uses Church’s notation for the λ-term add =
λn.λm.λx.n(m(x)). Below, we adapt such notation for our language L.

Lemma 3.2 (Simulating addition). Let Pr+ = {[c 7→ F2]·F1 ?≈? F3}. For all m,n, p ≥ 0,
there exists a ground unifier θ for Pr+ such that {[F1 7→ nac;F2 7→ mac;F3 7→ pac]} ⊆ θ if and
only if p = m+ n.

Next, a unification problem to simulate multiplication is defined. Once again, the lemma
and its proof are closely based on their counterpart in [Gol81].

Lemma 3.3. Let Pr× = {s1 ?≈? s2} where
s1 = [c1 7→ a; c2 7→ b; c3 7→ ([c 7→ a]·F3, ([c 7→ b]·F2, c))]·G and
s2 = ((a, b), [c1 7→ [c 7→ a]·F1; c2 7→ 1bb; c3 7→ c]·G).

For all m,n, p ≥ 0, there is a ground unifier θ for Pr× such that σ = [F1 7→ mac;F2 7→
nbc;F3 7→ pac] and σ ⊂ θ if and only if p = m× n.

Finally, we prove the undecidability for extended nominal unification using the term lan-
guage from Def. 3.1, Lem. 3.2 & Lem. 3.3, as follows.

Notice that every Diophantine equation of form P (X1, . . . , Xn) = Q(X1, . . . , Xn) can be
decomposed into a system of equations of the form indicated below (m denotes a natural
number)

Xi +Xj = Xk, Xi ×Xj = Xk, Xi = m.

Now, we associate a unification problem with each such system, containing

• for each Xi, a unification problem as given in Eq. 1;

• for each Xi +Xj = Xk, the unification problem used to define addtion in Lem. 3.2;

• for each Xi×Xj = Xk, the unification problem used to define multiplication in Lem. 3.3;

• for each Xi = m, the equation Xi = mac.

We have thus an encoding of Hilbert’s tenth problem.

Theorem 3.4. There is an effective method that reduces Hilbert’s tenth problem to the nominal
unification problem for L-terms. Therefore unification of nominal terms extended with atom
substitution is undecidable.

4 Conclusion

We have shown that nominal unification is undecidable if we extend nominal syntax with
a primitive, capture-avoiding atom substitution operation. Matching on the other hand is
decidable: we refer to [Dom17] for a matching algorithm for extended nominal terms, which is
unitary for a class of ‘simple’ matching problems. In future work, we will explore their use in
nominal rewriting and nominal equational reasoning, and also their application to type systems
and programming languages.

6

Undecidability of Nominal Unification with Atom Substitutions Domı́nguez and Fernández

Acknowledgements: We thank James Cheney and Jordi Levy for pointing out Goldfarb’s
results and for many useful suggestions.

References

[AP10] Andreas Abel and Brigitte Pientka. Explicit substitutions for contextual type theory. In
Proceedings 5th International Workshop on Logical Frameworks and Meta-languages: Theory
and Practice, LFMTP 2010, Edinburgh, UK, 14th July 2010., pages 5–20, 2010.

[BF07] William E. Byrd and Daniel Friedman. αKanren: A fresh name in nominal logic program-
ming. In Prooceedings of the 2007 Workshop on Scheme and Functional Programming, pages
79–90, 2007.

[BS01] F. Baader and W. Snyder. Unification theory. In J.A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, pages 447–533. Elsevier Science Publishers,
2001.

[Cal13] Christophe Calvès. Unifying Nominal Unification. In Femke van Raamsdonk, editor, 24th
International Conference on Rewriting Techniques and Applications (RTA 2013), volume 21
of Leibniz International Proceedings in Informatics (LIPIcs), pages 143–157, Dagstuhl, Ger-
many, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CF08a] Christophe Calvès and Maribel Fernández. Nominal matching and alpha-equivalence. In
Logic, Language, Information and Computation, 15th International Workshop, WoLLIC
2008, Edinburgh, UK, July 1-4, 2008, Proceedings, pages 111–122, 2008.

[CF08b] Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm.
Theor. Comput. Sci., 403(2-3):285–306, 2008.

[CF09] Christophe Calvès and Maribel Fernández. Matching and alpha-equivalence check for nom-
inal terms. Journal of Computer and System Sciences, 2009. Special issue: Selected papers
from WOLLIC 2008.

[CF10] Christophe Calvès and Maribel Fernández. The first-order nominal link. In Logic-Based
Program Synthesis and Transformation - 20th International Symposium, LOPSTR 2010,
Hagenberg, Austria, July 23-25, 2010, Revised Selected Papers, pages 234–248, 2010.

[Che05] James Cheney. Relating nominal and higher-order pattern unification. In Proceedings of
UNIF 2005, pages 104–119, 2005.

[CU04] James Cheney and Christian Urban. αprolog: A logic programming language with names,
binding and α-equivalence. In Logic Programming, pages 269–283. Springer Berlin Heidel-
berg, 2004.

[DGM10] Gilles Dowek, Murdoch James Gabbay, and Dominic P. Mulligan. Permissive nominal terms
and their unification: an infinite, co-infinite approach to nominal techniques. Logic Journal
of the IGPL, 18(6):769–822, 2010.

[Dom17] Jesús Domı́nguez. Rewriting formalisms with binding support: Comparing Combinatory
Reduction Systems and Nominal Rewrite Systems with atom substitution. PhD thesis, King’s
College London, 2017.

[DV96] Anatoli Degtyarev and Andrei Voronkov. The undecidability of simultaneous rigid e-
unification. Theor. Comput. Sci., 166(1&2):291–300, 1996.

[FFST15] Elliot Fairweather, Maribel Fernández, Nora Szasz, and Alvaro Tasistro. Dependent Types
for Nominal Terms with Atom Substitutions. In Thorsten Altenkirch, editor, 13th Interna-
tional Conference on Typed Lambda Calculi and Applications (TLCA 2015), volume 38 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 180–195, Dagstuhl, Ger-
many, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[FG07] Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–965,
2007.

7

Undecidability of Nominal Unification with Atom Substitutions Domı́nguez and Fernández

[FGM04] Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie. Nominal rewriting systems. PPDP
’04, pages 108–119, New York, NY, USA, 2004. ACM.

[GM08] Murdoch James Gabbay and Aad Mathijssen. Capture-avoiding substitution as a nominal
algebra. Formal Aspects of Computation, 20(4-5):451–479, 2008.

[GM09] Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra: Equational logic with
names and binding. Journal of Logic and Computation, 2009.

[Gol81] Warren D. Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13(2):225 – 230, 1981.

[GRS87] Jean H. Gallier, Stan Raatz, and Wayne Snyder. Theorem proving using rigid e-unification
equational matings. In Proceedings of the Symposium on Logic in Computer Science (LICS
’87), Ithaca, New York, USA, June 22-25, 1987, pages 338–346, 1987.

[KN10] Ramana Kumar and Michael Norrish. (nominal) unification by recursive descent with tri-
angular substitutions. In Interactive Theorem Proving, First International Conference, ITP
2010, Edinburgh, UK, July 11-14, 2010. Proceedings, pages 51–66, 2010.

[Lev96] Jordi Levy. Linear second-order unification. In Rewriting Techniques and Applications, 7th
International Conference, RTA-96, New Brunswick, NJ, USA, July 27-30, 1996, Proceed-
ings, pages 332–346, 1996.

[Lev98] Jordi Levy. Decidable and undecidable second-order unification problems. In Rewriting
Techniques and Applications, 9th International Conference, RTA-98, Tsukuba, Japan, March
30 - April 1, 1998, Proceedings, pages 47–60, 1998.

[LV00] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Inf.
Comput., 159(1-2):125–150, 2000.

[LV10] Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Proceedings
of the 21st International Conference on Rewriting Techniques and Applications, RTA 2010,
July 11-13, 2010, Edinburgh, Scottland, UK, pages 209–226, 2010.

[LV12] Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. ACM
Trans. Comput. Log., 13(2):10:1–10:31, 2012.

[Mat70] Yu. V. Matiyasevich. Enumerable sets are diophantine (in russian). Soviet Mathematical
Doklady, 191(2):279–282, 1970.

[PG00] Andrew M. Pitts and Murdoch Gabbay. A metalanguage for programming with bound names
modulo renaming. In Mathematics of Program Construction, 5th International Conference,
MPC 2000, Ponte de Lima, Portugal, July 3-5, 2000, Proceedings, pages 230–255, 2000.

[Pit03] Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Inf. Comput.,
186(2):165–193, 2003.

[Pot06] François Pottier. An overview of Cαml. Electr. Notes Theor. Comput. Sci., 148(2):27–52,
2006.

[Pot07] François Pottier. Static name control for freshml. In 22nd IEEE Symposium on Logic
in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages
356–365, 2007.

[SKLV16] Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal unific-
ation of higher order expressions with recursive let. In Logic-Based Program Synthesis and
Transformation - 26th International Symposium, LOPSTR 2016, Edinburgh, UK, September
6-8, 2016, Revised Selected Papers, pages 328–344, 2016.

[SPG03] Mark R. Shinwell, Andrew M. Pitts, and Murdoch James Gabbay. Freshml: programming
with binders made simple. SIGPLAN Notices, 38(9):263–274, 2003.

[UPG04] Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. Nominal unification. Theor.
Comput. Sci., 323(1-3):473–497, 2004.

8

	Introduction
	Background
	Undecidability of Extended Nominal Unification
	Conclusion

